Подробное решение страница стр.135 по биологии для учащихся 10 класса, авторов Захаров В.Б., Мамонтов С.Г. Углубленный уровень 2015
ВОПРОСЫ И ЗАДАНИЯ ДЛЯ ПОВТОРЕНИЯ
Вопрос 1. Что такое диссимиляция? Охарактеризуйте этапы этого процесса.
Совокупность реакции расщепления называют энергетическим обменом клетки или диссимиляцией. Диссимиляция прямо противоположна ассимиляции: в результате расщепления вещества утрачивают сходство с веществами клетки.
Энергетический обмен обычно делят на 3 этапа. Первый этап – подготовительный. На этом этапе молекулы ди- и полисахаридов, жиров, белков распадаются на мелкие молекулы – глюкозу, глицерин и жирные кислоты, аминокислоты, крупные молекулы нуклеиновых кислот – на азотистые основания – нуклеотиды. На этом этапе выделяется небольшое количество энергии, которая рассеивается в виде тепловой энергии.
Второй этап – бескислородный, или неполный. Он называется также анаэробным дыханием или брожением. Термин "брожение" обычно применяют по отношению к процессам, протекающим в клетке микроорганизмов или растений. Образующиеся на этом этапе вещества при участии ферментов вступают на путь дальнейшего расщепления. В мышцах, например, в результате анаэробного дыхания молекула глюкозы распадается на 2 молекулы молочной кислоты (гликолиз). В реакциях расщепления глюкозы участвуют фосфорная кислота и АДФ.
Третий этап энергетического обмена – стадия аэробного дыхания, или кислородного расщепления. Реакции этой стадии энергетического обмена также катализируются ферментами. При доступе О к клетке образовавшиеся во время предыдущего этапа вещества окисляются до конечных продуктов – Н2О и СО2. кислородное дыхание сопровождается выделением большого количества энергии и аккумуляцией ее в молекулах АТФ.
Вопрос 2. В чём заключается роль АТФ в обмене веществ в клетке?
Живые организмы могут использовать только химически связанную энергию. Каждое вещество обладает определенным запасом потенциальной энергии. Главными материальными носителями ее являются химические связи, разрыв или преобразование которых приводит к освобождению энергии. Энергетический уровень одних связей имеет величину 8—10 кДж — эти связи называются нормальными. В других связях заключена значительно большая энергия — 25—40 кДж — это так называемые макроэргические связи. Почти все известные соединения, обладающие такими связями, имеют в своем составе атомы фосфора или серы, по месту которых в молекуле и локализованы эти связи. Одним из соединений, играющих важнейшую роль в жизнедеятельности клетки, является аденозинтрифосфорная кислота (АТФ).
Аденозинтрифосфорная кислота (АТФ) состоит из органического основания аденина (I), углевода рибозы (II) и трех остатков фосфорной кислоты (III). Соединение аденина и рибозы называется аденозином. Пирофосфатные группы имеют макроэргические связи, обозначенные значком ~. Разложение одной молекулы АТФ с участием воды сопровождается отщеплением одной молекулы фосфорной кислоты и выделением свободной энергии, которая равна 33—42 кДж/моль. Все реакции с участием АТФ регулируются ферментными системами.
Вопрос 3. Расскажите об энергетическом обмене в клетке на примере расщепления глюкозы.
Вопрос 4. Какие типы питания организмов вам известны?
По типу питания все организмы делятся па автотрофных, гетеротрофных и миксотрофных.
Вопрос 5. Какие организмы называют автотрофными?
Автотрофы — организмы, живущие за счет неорганического источника углерода — углекислого газа, использующие для осуществления процессов синтеза энергию солнечного светя — фототрофы или энергию химических связей — хемотрофы.
Вопрос 6. Охарактеризуйте световую и темновую фазы фотосинтеза.
Фотосинтез — процесс образования органических соединений из неорганических в листьях зеленых растений на солнечном свету. Выделяют световую и темновую фазы фотосинтеза.
Входе световой фазы фотосинтеза происходит поглощение квантов смета хлорофиллами и фотолиз (разложение) воды. В результате образуются молекулы АТФ, атомарный водород Н', которые используются далее в темновой фазе для синтеза глюкозы, и молекулярный кислород (как побочный продукт), выделяемый в окружающую среду.
Темновая фаза фотосинтеза. Происходит образование глюкозы из углекислого газа, поглощаемого извне, водорода Н, полученного в ходе световой фазы, с затратой энергии АТФ, синтезированной также в световую фазу.
Вопрос 7. Почему в результате фотосинтеза у зелёных растений в атмосферу выделяется свободный кислород?
Кислород является побочным продуктом фотосинтеза. В ходе реакций световой фазы фотосинтеза под действием квантов светя и при взаимодействии с хлорофиллом происходит разложение (фотолиз) волы на атомарный водород и свободные радикалы Он-. Последние взаимодействуют между собой, образуя свободный кислород и воду.
Так как кислород не включается в дальнейший каскад реакций фотосинтеза, он выделяется во внешнюю среду.
Вопрос 8. Что такое хемосинтез?
Хемосинтезом называют процесс синтеза органических соединений с использованием углерода из углекислого газа за счет энергии химических связей неорганических веществ.
Вопрос 9. Какие организмы называют гетеротрофными? Приведите примеры.
Гетеротрофы — организмы, которые не способны синтезировать органические вещества из неорганических путём фотосинтеза или хемосинтеза. Для синтеза необходимых для своей жизнедеятельности органических веществ им требуются экзогенные органические вещества, то есть произведённые другими организмами. В процессе пищеварения пищеварительные ферменты расщепляют полимеры органических веществ на мономеры. Гетеротрофами являются почти все животные и грибы.
ВОПРОСЫ И ЗАДАНИЯ ДЛЯ ОБСУЖДЕНИЯ
Вопрос 1. Какие организмы называют автотрофными? На какие группы подразделяют автотрофов?
Автотрофные организмы, — это организмы, способные синтезировать органические соединения из неорганических (углекислого газа, воды и неорганических соединений азота и серы). В зависимости от источника потребляемой энергии автотрофы классифицируют на фотосинтезирующие и хемосинтезирующие организмы. Первые используют световую энергию, тогда как вторые — энергию экзотермических химических реакций (в ходе превращения неорганических соединении), т. е. энергию, образующуюся при окислении различных неорганических соединений (водорода, сероводорода, аммиака и др.).
Вопрос 2. Каков механизм образования свободного кислорода в результате фотосинтеза у зелёных растений? Раскройте биологическое и экологическое значение этого процесса.
В целом, химический баланс фотосинтеза может быть представлен в виде простого уравнения:
Водород, необходимый для восстановления диоксида углерода до глюкозы, берется из воды, а выделяющийся в ходе фотосинтеза кислород является побочным продуктом. Процесс нуждается в энергии света, так как вода сама по себе не способна восстанавливать диоксид углерода.
Фотосинтез – это процесс, от которого зависит вся жизнь на Земле. Он происходит только в растениях. В ходе фотосинтеза растение вырабатывает из неорганических веществ необходимые для всего живого органические вещества. Диоксид углерода, содержащийся в воздухе, проникает в лист через особые отверстия в эпидермисе листа, которые называют устьицами; вода и минеральные вещества поступают из почвы в корни и отсюда транспортируются к листьям по проводящей системе растения. Энергию, необходимую для синтеза органических веществ из неорганических, поставляет Солнце; эта энергия поглощается пигментами растений, главным образом хлорофиллом. В клетке синтез органических веществ протекает в хлоропластах, которые содержат хлорофилл. Свободный кислород, также образующийся в процессе фотосинтеза, выделяется в атмосферу.
Вопрос 3. Где, в результате каких преобразований молекул и в каком количестве образуется АТФ у живых организмов?
Синтез АТФ происходит в мембранах митохондрий в процессе дыхания, поэтому все ферменты и кофакторы дыхательной цепи, все ферменты окислительного фосфорилирования локализованы в данных органеллах.
ПРОБЛЕМНЫЕ ОБЛАСТИ
Вопрос 1. Как реализуется наследственная информация о признаках и свойствах ДНК- и РНК-содержащих вирусов?
В природе, носителем генетической информации являются нуклеиновые кислоты. Известно два основных типа нуклеиновых кислот: ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). У большинства живых организмов нуклеиновые кислоты содержатся в ядре и цитоплазме (клеточном соке). Вирусы, хоть и являются неклеточными структурами, но также содержат нуклеиновые кислоты. По типу содержащейся нуклеиновой кислоты вирусы разделяют на два класса: ДНК-содержащие и РНК-содержащие. К ДНК-содержащим вирусам относятся вирусы гепатита В, герпес и др. РНК-содержащие микроорганизмы представлены гриппом и парагриппом, вирусом иммунодефицита человека (ВИЧ), гепатитом А и пр. У данных микроорганизмов, равно как и у прочих живых организмов, нуклеиновые кислоты играют роль носителя генетической информации. Информация о структуре различных белков (генетическая информация) закодирована в структуре нуклеиновых кислот в виде специфических последовательностей нуклеотидов (составных частей ДНК и РНК). Гены вирусных нуклеиновых кислот кодируют разнообразные ферменты и структурные белки. ДНК и РНК вирусов являются материальным субстратом наследственности и изменчивости этих микроорганизмов – двух основных составляющих в эволюции вирусов в частности и всей живой природы в целом.
Вопрос 2. В чём заключается биологический смысл избыточности генетического кода?
Избыточность кода является следствием его триплетности и означает то, что одна аминокислота может кодироваться несколькими триплетами (поскольку аминокислот 20, а триплетов — 64). Исключение составляют метионин и триптофан, которые кодируются только одним триплетом. Кроме того, некоторые триплеты выполняют специфические функции. Так, в молекуле иРНК три из них УАА, УАГ, УГА — являются терминирующими кодонами, т. е. стоп-сигналами, прекращающими синтез полипептидной цепи. Триплет, соответствующий метионину (АУГ), стоящий в начале цепи ДНК, не кодирует аминокислоту, а выполняет функцию инициирования (возбуждения) считывания.
Избыточность кодирующих последовательностей – ценнейшее свойство когда, так как она повышает устойчивость информационного потока к неблагоприятным воздействиям внешней и внутренней среды. При определении природы аминокислоты, которая должна быть заключена в белок, третий нуклеотид в кодоне не имеет столь важного значения, как первые два. Для многих аминокислот замена нуклеотида третьей позиции кодона не сказывается на его смысле.
Вопрос 3. Каким образом реализуется наследственная информация о структуре и функциях небелковых молекул, синтезируемых в клетке?
Генетическая информация зашифрована в ДНК и РНК.
Вопрос 4. Как вы считаете, можно ли повысить эффективность фотосинтеза?
Основываясь на механизмах влияния внутренних и внешних факторов, действующих на показатели фотосинтетической активности растений, в практике сельского хозяйства используют ряд приемов, позволяющих увеличить интенсивность фотосинтеза и повысить урожайность сельскохозяйственных культур, к ним относят:
• соблюдение режима орошения,
• соблюдение режима минерального питания,
• использование необходимых внекорневых подкормок микроэлементами,
• повышение в защищенном грунте концентрации углекислого газа за счет применения органических удобрений (внесение навоза), использования сухого льда, поддымление парниковых рам. При этом у огурцов не только повышается интенсивность фотосинтеза, но и увеличивается количество женских цветков.
ПРИКЛАДНЫЕ АСПЕКТЫ
Вопрос 1. Как вы думаете, каким образом можно повысить эффективность фотосинтеза у зелёных растений?
Основываясь на механизмах влияния внутренних и внешних факторов, действующих на показатели фотосинтетической активности растений, в практике сельского хозяйства используют ряд приемов, позволяющих увеличить интенсивность фотосинтеза и повысить урожайность сельскохозяйственных культур, к ним относят:
• соблюдение режима орошения,
• соблюдение режима минерального питания,
• использование необходимых внекорневых подкормок микроэлементами,
• повышение в защищенном грунте концентрации углекислого газа за счет применения органических удобрений (внесение навоза), использования сухого льда, поддымление парниковых рам. При этом у огурцов не только повышается интенсивность фотосинтеза, но и увеличивается количество женских цветков.
Вопрос 2. Какие примеры, характеризующие использование особенностей метаболизма организмов в медицине, сельском хозяйстве и других отраслях, вы можете привести?
Примером метаболизма в кондитерской промышленности может служить использование дрожжей.
ЗАДАНИЯ
Вопрос 1. Напишите реакции световой и темновой фаз фотосинтеза. Обозначьте пути переноса электронов и протонов.
Вопрос 3. Опишите процесс расщепления органических молекул при участии кислорода в клетках аэробов.
Дыхание – это окислительный, с участием кислорода распад органических питательных веществ, сопровождающийся образованием химически активных метаболитов и освобождением энергии, которые используются клетками для процессов жизнедеятельности.
В процессе дыхания образуется огромное количество энергии. Если вся она выделилась бы сразу, то клетка перестала бы существовать. Но этого не происходит, потому что энергия выделяется не вся сразу, а ступенчато, небольшими порциями. Выделение энергии небольшими дозами обусловлено тем, что дыхание представляет собой многоступенчатый процесс, на отдельных этапах которого образуются различные промежуточные продукты (с разной длиной углеродной цепочки) и выделяется энергия. Выделяющаяся энергия не расходуется в виде тепла, а запасается в универсальном макроэргическом соединении — АТФ. При расщеплении АТФ энергия может использоваться в любых процессах, необходимых для поддержания жизнедеятельности организма: на синтез различных органических веществ, механическую работу, поддержание осмотического давления протоплазмы и т. д.