4.1.1.4. Механизм обеспечения синтеза белка

Подробное решение страница стр.125 по биологии для учащихся 10 класса, авторов Захаров В.Б., Мамонтов С.Г. Углубленный уровень 2015



ВОПРОСЫ И ЗАДАНИЯ ДЛЯ ПОВТОРЕНИЯ

Вопрос 1. Как осуществляется процесс трансляции?

Трансляция - процесс синтеза белка в цитоплазме клетки. Молекулярные процессы, лежащие в основе синтеза белка, крайне сложны. В синтезе белка участвует три таких класса молекул РНК ( мРНК, тРНК и рРНК ). Началом синтеза белка принято считать процесс транскрипции ДНК, в результате которого в ядре должна образоваться соответствующая информационная, или матричная, РНК (мРНК), которая затем должна перейти в цитоплазму клетки. Многоступенчатый матричный синтез белка, собственно трансляцию, протекающую в рибосоме, условно делят на три стадии: инициацию, элонгацию и терминацию.

Вопрос 2. Расскажите о роли рРНК в обеспечении комплементарного связывания кодона иРНК с антикодоном тРНК.

Рибосомная РНК (рРНК) составляет основную часть РНК цитоплазмы (80-90 %). Размеры 3000-5000 пар нуклеотидов. Вторичная структура в виде двухспиральных шпилек. р-РНК является структурным компонентом рибосом - органоиды клетки, где происходит синтез белков. Рибосомы локализованы в цитоплазме, ядрышке, митохондриях, хлоропластах. Состоят из двух субъединиц – большой и малой. Малая субчастица состоит из одной молекулы рРНК и 33 молекул белков, большая субъединица - 3 молекулы рРНК и 50 белков. Белки рибосом выполняют ферментативную и структурную функции. Функции р-РНК: 1) структурный компонент рибосом – их целостность необходима для биосинтеза белков, 2) обеспечивают правильность связывания рибосомы с м-РНК, 3) обеспечивают правильность связывания рибосомы с т-РНК.

Вопрос 3. Где происходит процесс трансляции?

Трансляция — процесс синтеза полипептидных цепей, осуществляемый на рибосомах, где иРНК является посредником в передаче информации о первичной структуре белка.

Вопрос 4. Каково значение продолжительности «жизни» иРНК в жизнедеятельности клетки?

Все бактериальные иРНК довольно быстро разрушаются и синтезируются. Время их полураспада не превышает 3 минут. Это обеспечивает быстрое приспособление микроорганизмов к меняющимся условиям окружающей среды. иРНК эукариотических клеток более стабильны. Стабильность иРНК определяется особенностями структуры самих РНК. Молекулы иРНК модифицируют свои 3’ концы присоединением полиаденилового фрагмента. По мере участия иРНК в процессах трансляции, длина этого фрагмента уменьшается. Критическим для стабильности считается 30 адениловых нуклеотидов. В частности сигналами для быстрого разрушения молекул могут служить последовательности богатые У и А на 3’ концах этих РНК, которые являются сигналами для более быстрого удаления полиадениловых участков РНК. Стабильность РНК может усиливаться некоторыми гормонами стероидной природы, которые не только стимулируют образование новых молекул РНК, но и стабилизируют функционирующие. В ряде случаев стабильность РНК определяется скоростью трансляции и потребностью белков.

Вопрос 5. Что собой представляют гены тРНК и иРНК? Опишите, как реализуется информация о структуре этих молекул.

Первый тип — иРНК, синтезируется в ядре клетки. Ее синтез на одной из двух цепей ДНК катализируется РНК-полимеразой.

Синтезируемая иРНК повторяет последовательность нуклеотидов, составляющих генетический код ДНК. Генетический код представлен последовательностями триплетов оснований нукле­отидов, т.е. каждые три последовательных основания есть «слово» кода. Каждый триплет кодирует позицию одной аминокислоты. Отсюда триплеты иРНК определяют порядок включения аминокис­лот в молекулу белка во время ее синтеза в клетке. Например, два последовательных триплета (гуанин-гаунин-гаунин, ГГГ и гуанин-тимидин-тимидин, ГТТ) ответственны за размещение двух амино­кислот — пролина и глютаминовой кислоты в молекуле белка. Ко­дирующий триплет иРНК называется кодоном. Следовательно, цепь кодонов, в свою очередь, составляет матрицу для синтеза амино­кислотной цепи белка. Синтез иРНК предваряется активацией нуклеотидов, присоединением к каждому из них двух фосфатных ради­калов, полученным от АТФ клетки, т.е. идет с потреблением энерии.

Второй тип РНК — тРНК. В клетке много различных типов тРНК, но каждый из них комбинируется только с одной из 20 аминокислот, «узнает» кодон соответствующей аминокислоты на иРНК и транспортирует аминокислоту к этому месту. Таким образом, каждая тРНК является переносчиком специфической для нее аминокислоты к месту сборки белка — к полисомам. Аминокислоты вступают в синтез определенного белка после активации их моле­кулой АТФ, т.е. лишь активированная АТФ аминокислота соединя­ется с молекулой специфической тРНК. Специфический кодон в тРНК, который позволяет ей узнавать комплементарный кодон в иРНК — это также триплет нуклеотидных оснований и называется он антикодон. Во время формирования молекулы белка антикодоновые основания соединяются водородными мостиками с основаниями кодона иРНК. Благодаря этому, аминокислоты выстраиваются одна за другой вдоль цепи иРНК, образуя соответствующую последовательность аминокислот в молекуле белка.