§ 39. Закономерности наследования. Моногибридное скрещивание

Подробное решение параграф § 39 по биологии для учащихся 10 класса, авторов Каменский А.А., Криксунов Е.А., Пасечник В.В. 2014



1. Какие гены называются аллельными?

Ответ. Аллельные гены - различные формы одного и того же гена, расположенные в одинаковых участках (локусах) гомологических хромосом. Аллели определяют варианты развития одного и того же признака. В нормальной диплоидной клетке могут присутствовать не более двух аллелей одного локуса одновременно. В одной гамете два аллеля находиться не могут.

2. Что представляют собой гены с точки зрения биохимика?

Ответ. С точки зрения биохимика, ген – это участок молекулы ДНК, содержащий информацию о структуре определённого белка (либо рРНК, либо тРНК). Гены расположены в хромосомах.

В ходе реализации наследственной информации, содержащейся в генах, осуществляется синтез соответствующих белков. Каждый белок выполняет определённую функцию, что ведёт к проявлению того или иного признака организма. Эту связь можно отразить следующей схемой: ген → белок → признак.

Вопросы после §39

1. Почему Г. Мендель опылял растения гороха искусственно?

Ответ. Мендель решил пронаблюдать интересующее его явление – наследственность – у гороха. Горох очень удобен для изучения наследственности, его легко выращивать и весь жизненный цикл проходит быстро. Также он склонен к самоопылению, а без самоопыления, опыты Менделя были бы невозможны.

В первую очередь, признак, наследование которого наблюдается, должен четко различаться визуально. Проще всего взять признак, который проявляется в двух вариантах. Мендель выбрал окраску семядолей. Семядоли у семян гороха могут быть либо зеленые, либо желтые. Такие проявления признака хорошо различимы и четко делят все семена на две группы.

Кроме того, нужно быть уверенным, что наблюдаемая картина наследования является следствием скрещивания растений с разными проявлениями выбранного признака, а не вызвана какими-то другими обстоятельствами (откуда, строго говоря, он мог знать, что цвет семядолей не зависит, например, от температуры, при которой горох рос?). Как этого добиться?

Мендель вырастил две линии гороха, в одной из которых появлялись только зеленые семена, а в другой – только желтые. Причем на протяжении многих поколений в этих линиях картина наследования не изменялась. В таких случаях (когда в ряде поколений отсутствует изменчивость) говорят, что использована чистая линия.

Всех факторов, влияющих на наследственность, Мендель не знал, поэтому сделал нестандартный логический ход. Он изучил, какие результаты дает скрещивание между собой растений с семядолями одного цвета (в данном случае потомки – точная копия родителей). После этого он провел скрещивание растений с семядолями разных цветов (у одного – зеленые, у другого – желтые), но в тех же условиях. Это дало ему основания утверждать, что различия, которые проявятся в картине наследования, вызваны различными фенотипами родителей при этих двух скрещиваниях, а не каким-либо другим фактором.

2. Какие организмы называются гомозиготными по какому-либо признаку?

Ответ. Гомозиготность (от греч. "гомо" равный, "зигота" оплодотворенная яйцеклетка) диплоидный организм (или клетка), несущий идентичные аллели в гомологичных хромосомах.

Грегором Менделем впервые был установлен факт, свидетельствующий о том, что растения, сходные по внешнему виду, могут резко отличаться по наследственным свойствам. Особи, не дающие расщепления в следующем поколении, получили название гомозиготных. Особи, в потомстве у которых обнаруживается расщепление признаков, назвали гетерозиготными.

3. Почему именно Г. Менделя считают основоположником генетики?

Ответ. Г. Менделю принадлежит открытие явлений дискретной наследственности и ее законов. Это открытие заложило основы генетики — науки о наследственности и изменчивости организмов. Установление принципа дискретной наследственности и ее законов наложило печать на все развитие биологии XX в.

Г. Мендель внес в генетику количественный метод и принципы теории вероятности. Он показал, что биологические законы общего значения допускают функциональные выражения, они могут быть выражены математически. Язык алгебры, который раскрыл перед Менделем законы расщепления в их обобщенной форме, явился первым шагом в современном математическом анализе проблем наследственности.

Функциональное выражение законов расщепления позволило использовать их для предсказаний хода расщепления, которые оправдываются с поразительной точностью. Мендель в своей работе сам сделал несколько таких предсказаний, часть из них была получена им самим, а часть была доказана уже в XX в.

Исходя из поведения гибридов при их скрещивании, Мендель предсказал, что их зародышевые клетки получат в половине случаев один ген и в другой половине — другой ген из пары аллелей. Его эксперимент с обратным скрещиванием точно доказал правоту предсказания. Затем в XX в. изучение мейоза раскрыло, что этому явлению есть причинное объяснение на основе поведения гомологов в паре хромосом. Г. Мендель показал, что число генотипов при сложном расщеплении во втором поколении составляет 3n. Это предсказание было положено в основу громадного количества опытов в XX в., и какой бы сложности случай ни был изучен, предсказание оправдывалось с поразительной точностью. Эта реализация предсказаний была следствием всеобщности принципов, открытых Менделем на горохе. Эта общность вытекает из единства поведения хромосом при образовании половых клеток и из осуществления всех вероятностей встреч разных классов гамет друг с другом, которые всегда имеют место при наличии достаточно большого числа случаев.

Т. Мендель обосновал идею о наследственных факторах и разработал для них знаковую модель на базе использования идей математической статистики. В результате центральный пункт современной молекулярной генетики — проблема гена берет свои прямые истоки из открытия Менделя. Мендель строит весь свой анализ на базе введенного им метода генетического анализа. Он кропотливо во всех опытах изучает, в какой мере генотип каждого класса растений отвечает гипотезе. Апогей этого метода достигается в экспериментах по скрещиванию гибридов с рецессивным гомозиготом (анализатором), когда Мендель в прямом опыте раскрывает наследственные структуры гамет гибридов. Таким образом, основа основ генетики, ее генетический метод, который раскрыл законы наследования, позволил, сочетаясь с цитологией, войти в глубины генетического строения хромосом, а затем, войдя в комплекс с физикой, химией и математикой, создал современное учение о записи генетической информации и, наконец, раскрыл тайну строения гена. Все это находит свои прямые истоки в работе Г. Менделя. Мендель доказал важнейшее положение, что оплодотворение у растений базируется на слиянии одной яйцеклетки с одним спермием. Мендель на примере группы самоопыляющихся растений впервые провел исследования по генетике популяций.

Все это создало работе Г. Менделя положение исходного пункта в теоретическом анализе явлений наследственности.

В наши дни генетика составляет сердцевину всей биологии. Исследования в биологии, посвященные сущности жизни, имеют громадное значение для сельского хозяйства и медицины. Так же как в центре атомной науки стоит изучение глубин атома, его строения из элементарных частиц и сил, обеспечивающих их взаимодействие, так в центре современной генетики стоит изучение глубин гена, его химических и физических свойств как биологической единицы наследственности. Мендель обосновал алгебру биологии, обозначив отдельные гены буквами. В его знаковой системе это были буквы A, В, С и др.