3.2.4.5. РНК - рибонуклеиновые кислоты

Подробное решение страница стр.105 по биологии для учащихся 10 класса, авторов Захаров В.Б., Мамонтов С.Г. Углубленный уровень 2015



ВОПРОСЫ И ЗАДАНИЯ ДЛЯ ПОВТОРЕНИЯ

Вопрос 1. Что такое нуклеиновые кислоты?

Нуклеиновые кислоты - линейные нерегулярные биополимеры, мономерами которых являются нуклеотиды. Нуклеотид - органическое соединение, состоящее из азотистого основания (аденин, тимин, урацил, гуанин, цитозин), пятиуглеродного сахара (пентозы) — рибозы или дезоксирибозы и остатка фосфорной кислоты. В Состав нуклеиновых кислот входит 8 видов нуклеотидов — 4 вида рибозосодержащих (в РНК) и 4 вида дезоксирибозосодержащих (в ДНК). Отдельные нуклеотиды объединяются в полинуклеотидную цепь за счет образования фосфоэфирных связей между сахаром предыдущего и остатком фосфорной кислоты последующeгo нуклеотида.

Вопрос 2. Какие простые органические соединения служат элементарной составной частью нуклеиновых кислот?

Мономерами нуклеиновых кислот служат нуклеотиды. Нуклеотид — органическое соединение, состоящее из азотистого основания (аденин, тимин, урацил, гуанин, цитозин), пятиуглеродного сахара (пентозы) — рибозы или дезоксирибозы и остатка фосфорной кислоты.

Вопрос 3. Охарактеризуйте типы нуклеиновых кислот.

Существует два типа нуклеиновых кислот — дезоксирибонуклеиновая и рибонуклеиновая.

Молекула ДНК представляет собой двухцепочечный линейный нерегулярный биополимер, мономерами которого являются нуклеотиды, содержащие дезоксирибозу, аденин, гуанин, цитозин, тимин и остаток фосфорной кислоты. Цепи в молекуле ДНК антипараллельны - разнонаправлены. Цепи связаны друг с другом водородными связями, возникающими между азотистыми основаниями противоположных цепей по принципу комплементарности, т. е. взаимодополнения. При этом образуются пары: аденин - тимин, гуанин - цитозин. Двухцепочечная молекула ДНК образует спираль, которая, взаимодействуя с белками гистонами, формирует нуклеосомную нить - спираль более высокого порядка. Нуклеосомная нить, в свою очередь, образует суперспираль, при атом молекула так значительно укорачивается и утолщается, что становится видна в световой микроскоп как вытянутое тельце - хромосома.

Молекула РНК - одноцепочечный, линейный, нерегулярный биополимер, мономерами которого являются нуклеотиды, содержащие рибозу, аденин. урацил, гуанин. цитозин и остаток фосфорной кислоты. Многие виды РНК формируют участки комплементарного соединения в пределах одной цепи, что придает им определенную пространственную конфигурацию. Встречаются и двуцепочечные РНК, которые являются хранителями генетической информации у ряда вирусов, т. е. выполняют у них функции хромосом.

Вопрос 4. Чем различается строение молекул ДНК и РНК?

Молекула ДНК представляет собой двухцепочечный линейный нерегулярный биополимер, мономерами которого являются нуклеотиды, содержащие дезоксирибозу, аденин, гуанин, цитозин, тимин и остаток фосфорной кислоты. Цепи в молекуле ДНК антипараллельны - разнонаправлены. Цепи связаны друг с другом водородными связями, возникающими между азотистыми основаниями противоположных цепей по принципу комплементарности, т. е. взаимодополнения. При этом образуются пары: аденин - тимин, гуанин - цитозин. Двухцепочечная молекула ДНК образует спираль, которая, взаимодействуя с белками гистонами, формирует нуклеосомную нить - спираль более высокого порядка. Нуклеосомная нить, в свою очередь, образует суперспираль, при атом молекула так значительно укорачивается и утолщается, что становится видна в световой микроскоп как вытянутое тельце - хромосома.

Молекула РНК - одноцепочечный, линейный, нерегулярный биополимер, мономерами которого являются нуклеотиды, содержащие рибозу, аденин. урацил, гуанин. цитозин и остаток фосфорной кислоты. Многие виды РНК формируют участки комплементарного соединения в пределах одной цепи, что придает им определенную пространственную конфигурацию. Встречаются и двуцепочечные РНК, которые являются хранителями генетической информации у ряда вирусов, т. е. выполняют у них функции хромосом.

Вопрос 5. Перечислите и раскройте функции ДНК.

ДНК выполняет следующие функции:

1. Хранение наследственной информации. Наследственная информация в молекуле ДНК заключается в последовательности нуклеотидов одной из ее цепей. Наименьшей единицей генетической информации является триплет - три последовательна расположенных в попинукле0тидной цепи нуклеотида.

Последовательность триплетов в полинуклеотидной цепи молекулы ДНК несет информацию о последовательности аминокислот в молекуле белка.

Группа последовательно расположенных триплетов, несущая информацию о структуре одной белковой молекулы, называется геном.

2. передача наследственной информации из поколения в поколение осуществляется в результате редупликации (удвоения молекулы ДНК) с последующим распределением дочерних молекул между дочерними клетками.

3. Передача наследственной информации на информационную РНК. При этом ДНК является матрицей. На одной из цепей молекулы ДНК по принципу комплементарности синтезируется молекула информационной РНК, которая далее переносит информацию в цитоплазму.

Вопрос 6. Какие виды РНК имеются в клетке?

Выделяют следующие виды РНК:

1. Информационная РНК. Синтезируется в ядре на одной из цепей ДНК по принципу комплементарности; в цитоплазме выполняет роль матрицы в процессе трансляции.

2. Рибосомальная РНК. Синтезируется в ядре, в зоне ядрышка; входит в состав рибосом, обеспечивающих трансляцию.

З. Транспортная РНК. Доставляет аминокислоты к месту синтеза белка. Осуществляет по принципу комплементарности распознавание триплета на информационной РНК, соответствующего переносимой аминокислоте, и точную ориентацию аминокислоты в активном центре рибосомы.

ВОПРОСЫ И ЗАДАНИЯ ДЛЯ ОБСУЖДЕНИЯ

Вопрос 1. В чём заключается биологическая роль двухцепочечности молекул ДНК, выполняющих функции хранителя наследственной информации?

ДНК является носителем генетической информации, записанной в виде последовательности нуклеотидов с помощью генетического кода. С молекулами ДНК связаны два основополагающих свойства живых организмов — наследственность и изменчивость. В ходе процесса, называемого репликацией ДНК, образуются две копии исходной цепочки, наследуемые дочерними клетками при делении, таким образом образовавшиеся клетки оказываются генетически идентичны исходной.

Вопрос 2. Какова сущность процесса передачи наследственной информации из поколения в поколение и из ядра в цитоплазму к месту синтеза белка?

При передаче наследственной информации из поколения в поколение молекулы ДНК удваиваются в процессе дупликации. Каждая дочерняя клетка получает одну из двух идентичных молекул ДНК. При бесполом размножении генотип дочернего организма идентичен материнскому. При половом размножении организм потомка получает собственный диплоидный набор хромосом, собранный из гаплоидного материнского и гаплоидного отцовского наборов.

При передаче наследственной информации из ядра в цитоплазму ключевым процессом является транскрипция - синтез РНК на ДНК. Синтезированная молекула иРНК является комплементарной копией определенного фрагмента ДНК - гена и содержит информацию о строении определенного белка. Такая молекула иРНК является посредником между хранилищем генетической информации - ядром и цитоплазмой с рибосомами, где создаются белки. Рибосомы используют иРНК как матрицу ("инструкцию") для синтеза белка в процессе трансляции.

ПРОБЛЕМНЫЕ ОБЛАСТИ

Вопрос 1. Что является наследственным материалом у некоторых вирусов, не содержащих ДНК? Как происходит реализация наследственной информации этих организмов?

РНК-содержащие вирусы не имеют ДНК; генетическая информация закодирована в РНК. РНК может быть одно и двуцепочечной, а клетка-хозяин – про, или эукариотической. Только вирусы с одноцепочечной РНК заражают бактерии, а эукариотические вирусы могут быть как одно - так и двухцепочечными.

Репликация осуществляется РНК-репликазой, продуцирующей копии РНК для новых вирионов. Синтез белка капсида происходит только после того как инфицировавшая клетку РНК подвергается некоторой модификации, делающей возможным присоединение рибосом клетки к тому участку РНК, которым кодируется этот белок. Сборка вириона начинается с образования дисков из белка капсида. Два таких белковых диска, располагаясь концентрически, образую похожую на бисквит структуру, которая после связывания с ней РНК приобретает форму спирали. Последующее присоединение молекул белка продолжается до тех пор, пока РНК не будет покрыта полностью. В своей окончательной форме вирион представляет собой цилиндр длиной 300 нм.

Вопрос 2. Почему и в каких случаях у некоторых животных основным источником энергии является не глюкоза, а жир?

Жиры или липиды – богатый источник энергии. При окислении они выделяют больше энергии, нежели белки и углеводы вместе взятые. При распаде жиров не только выделяется много энергии, но и образуется достаточное количество воды, что крайне необходимо для поддержания водного обмена в организме.

Жиры обладают свойствами, которые очень важны для организма. Они являются носителями энергии (1 грамм жира дает 9,3 килокалории), поставщиками атомов углерода для биосинтеза, а также незаменимых жирных кислот, которые не могут быть произведены самим организмом, но являются крайне необходимыми.

Вопрос 3. Каково значение витаминов и других низкомолекулярных органических соединений в жизнедеятельности организмов?

Значение витаминов состоит в том, что, присутствуя в организме в ничтожных количествах, они регулируют реакции обмена веществ. Роль витаминов сходна с ролью ферментов и гормонов. Целый ряд витаминов входит в состав различных ферментов. При недостатке, в организме витаминов развивается состояние, называемое гиповитаминозом. Заболевание, возникающее при отсутствии того или иного витамина, называется авитаминозом.

К настоящему времени открыто более 20 веществ, которые относят к витаминам. Обычно их обозначают буквами латинского алфавита А, В, С, D, Е, К и др. К водорастворимым относятся витамины группы В, С, РР и др. Ряд витаминов являются жирорастворимыми.

Витамины влияют на обмен веществ, свертываемость крови, рост и развитие организма, сопротивляемость инфекционным заболеваниям. Особенно важна их роль в питании молодого организма и тех взрослых, чья деятельность связана с большими физическими нагрузками на производстве, в спорте. Повышенная потребность в витаминах может быть связана с особыми условиями среды обитания (высокая или низкая температура, разреженный воздух). Например, суточная потребность витамина С для взрослых составляет в среднем 50— 100 мг, для детей 35—50 мг, для тренирующихся спортсменов до 200 мг и более (им в целях повышения работоспособности даже рекомендуется принимать этот витамин на старте, а марафонцам — на дистанции). Витаминная недостаточность, как правило, сказывается в ранний весенний период, когда сразу после зимы организм ослаблен, а в пище мало витаминов и других биологически активных компонентов в связи с ограничением в рационе свежих овощей и фруктов.

ПРИКЛАДНЫЕ АСПЕКТЫ

Вопрос 1. Каковы пути решения задач в области генетической инженерии, существующие в настоящее время?

Генетическая инженерия — совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы. Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, , микробиология, вирусология. Основные этапы решения генноинженерной задачи следующие: 1. Получение изолированного гена.

2. Введение гена в вектор для переноса в организм.

3. Перенос вектора с геном в модифицируемый организм.

4. Преобразование клеток организма.

5. Отбор генетически модифицированных организмов (ГМО) и устранение тех, которые не были успешно модифицированы.

Вопрос 2. Как можно использовать каталитические функции белковых молекул в народном хозяйстве?

Наиболее хорошо известная функция белков в организме — катализ различных химических реакций. Ферменты — это белки, обладающие специфическими каталитическими свойствами, то есть каждый фермент катализирует одну или несколько сходных реакций. Ускорение реакции в результате ферментативного катализа может быть огромным. Молекулы, которые присоединяются к ферменту и изменяются в результате реакции, называются субстратами. Часть молекулы фермента, которая обеспечивает связывание субстрата и катализ, называется активным центром.

Данную функцию белков можно использовать в народной хозяйстве при производстве стиральных порошков.

ЗАДАНИЯ

Вопрос 1. Охарактеризуйте свойства генетического кода.

Свойства генетического кода:

Свойства генетического кода

Вопрос 2. Каковы пути передачи наследственной информации в биологических системах?

Передача генетической информации в любой клетке основана на матричных процессах (репликации, транскрипции, трансляции).